ICE Project:
Magnetocaloric Refrigeration for Efficient Air Conditioning

Carloandrea Malvicino, Fausto Di Sciullo
Centro Ricerche Fiat
Jean-Baptiste Chaudron
Cooltech Applications
The ICE Consortium
The ICE Consortium

<table>
<thead>
<tr>
<th>Project full title:</th>
<th>ICE – Magnetocaloric Refrigeration for Efficient Air Conditioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting date</td>
<td>1(^{st}) December 2010</td>
</tr>
<tr>
<td>Ending date</td>
<td>30(^{th}) April 2014</td>
</tr>
<tr>
<td>Budget total/funding</td>
<td>4‘428’550 Euro/2‘993’540 Euro</td>
</tr>
<tr>
<td>Type of project</td>
<td>Collaborative project</td>
</tr>
</tbody>
</table>

Centro Ricerche Fiat, Italy
- Project coordinator
- Control strategies
- Exploitation

Cooltech Applications, France
- Magnetocaloric heat pump design and realization
- Exploitation

Behr, Germany (French division)
- Heat exchangers development
- Exploitation

Un. Politecnica de Valencia, Spain
- Mathematical modeling
- Dissemination

INSA Strasbourg, France
- Magnetocaloric refrigeration concept development and basics

Iveco ALTRA, Italy
- Vehicle integration
- Exploitation
The Magnetocaloric Effect is an intrinsic property of magnetic materials which results in a reversible variation of temperature of the material when submitted to a magnetic field. This phenomenon is maximal in the vicinity of the ordering temperature of the magnetic material (the Curie or the Néel temperature).

1881: observed in iron by Warburg
1926-1927: explained by Debye and Giauque

The Magnetocaloric Effect is a phenomenon where a material's temperature changes in response to a magnetic field. It is significant for applications in cooling and refrigeration, particularly in mobile air conditioning systems. The effect is characterized by an increase or decrease in temperature depending on the direction of the magnetic field.
ICE Project: the goal

The proposal is the development of a industrial prototype level magnetocaloric heat pump for automotive application, realizing a really new generation system able to replace the vapor compression systems.

Heat Pump Unit main features:

- **COP:** 5
- **Temperature span:** 5 °C – 60 °C
- **Cooling power:** 5 kW
- **Heating power:** 6 kW
- **Compact packaging**
- **Electrically driven**
- **No refrigerant, no GHG problems**
- **Low working pressure (< 2 bar)**

A complete air conditioning system will be realized, installed and validated on a IVECO Daily fully electric **minibus** (already commercialized)
ICE Project: main contents

Efficient automotive electrical compact heat pump
• COP > 5 in cooling mode
• based on magnetocaloric effect using high efficiency magnetic materials, smart design and specific microchannel heat exchangers.

Redesign of the vehicle thermal systems
• to distribute locally the thermal power
• to regulate the batteries and electronic temperature also in very hot climate

Microclimate control system based on thermal comfort
• to limit the thermal power generation only to the really required quantity
• to adapt the system to the occupants’ number

Sustainable Cost thanks to
• the innovative technical solutions that will be adopted
• the thermal systems resize and their integration
Project Scheduling

2011

- Magnetocaloric Refrigeration
 - INSA

2012

- Magnetocaloric Heat Pump
 - COOLTECH

- Control Strategies
 - CRF

- Advanced Heat Exchangers
 - BEHR

2013

- Vehicle integration
 - ALTRA

Dissemination – UPVLC & INSAS
System requirements – Summer

Maximum average power consumption: **1.5 kW** (all included but the fan and blower)
Maximum peak power: **< 10 kW for 10’** (accumulated energy in the batteries max 80 kWh)
Reference ambient conditions: **35 °C – 60% R.H. – no solar irradiation**
Occupation (only for modelling and system sizing): **driver + 7 passengers**
Cabin Target: **−10 °C** in respect to external temperature and R.H. < 50%

The driver area should be considered with priority
In case of minibus (e.g. shuttle) it is better to **avoid too large temperature gap** so to limit the passenger thermal stress guaranteeing **acceptable comfort conditions**. In case of extreme summer conditions the ventilation and the low R.H. will guarantee an acceptable comfort level not increasing too much the energy demand and the consequent negative impact on the vehicle range.

Cool down time – summer operation: **60’** – not relevant performance

Assumption: When the vehicle is parked it is plugged ➔ the cool down time performance is not relevant.
System requirements – Winter

Maximum average power consumption: **1.5 kW** (all included but the fan and blower)

Maximum peak power: **< 10 kW for 10’** (accumulated energy in the batteries max 80 kWh)

Reference ambient conditions: **0 °C – no solar irradiation**

Occupation (only for modelling and system sizing): **driver + 7 passengers**

Cabin Target:

- **Passenger**: +10 °C in respect to external temperature
- **Driver**: +20 °C in respect to external temperature

In case of minibus (e.g. shuttle) it is better to **avoid too large temperature gap** so to limit the passenger thermal stress guaranteeing **acceptable comfort conditions** without limiting too much the vehicle range.

Dehumidification is not relevant.

Warm up time: 60’ even if it not a relevant performance

Assumption: When the vehicle is parked it is plugged ➔ the warm up time performance is not relevant.

Defogging and Deicing: an electrified windshield can be adopted
The magnetocaloric unit: how it works

A magnetocaloric pump is based on active magnetic regenerative (AMR) cycle, used to adapt the basic cycle of the material to the required temperature difference imposed by the sink and source temperatures on a vehicle which are much larger (10 to 30 K).

The AMR cycle consists in 4 phases:

1. **Magnetization**: the active material is forced to pass through a high magnetic field and *warms up* due to its magneto caloric effect (MCE)

2. **Material cooling**: the fluid is pushed through the regenerator from the cold to the hot side, warming up and cooling down the active material

3. **Demagnetization**: the active material exits the magnetic field and *cools down* because of the MCE

4. **Material heating**: the fluid is pushed through the regenerator from the hot to the cold side, cooling down and warming up the active material.
The magnetocaloric heat pump

To increase the temperature span between hot and cold ends, a multistage prototype has been designed and a proper sequence of magnetocaloric material has been selected.

Measure of magnetic entropy variation for different Curie temperatures

Span ≈ 35K
f = 1.2 Hz
B ≈ 0.65 T

+31°C
-4°C
Thermal power distribution system outline

- **Front magnetocaloric unit**

- **Cabin HVAC modules**

- **Air distribution**

- **Coolant Loop**

- **Driver HVAC Module**

- **Radiator**

- **Mean radiant temperature sensors**

- **Front HX**

- **Right HX**

- **Left HX**

- **Rear MCU**

- **Front MCU**

- **Rear magnetocaloric unit**

- **Secondary loop** to distribute thermal power

- **Cabin temperature** control based on perceived thermal comfort
Summer vs Winter operation

Summer mode

Cold side of the MCU is connected to the cabin heat exchangers. *Power electronics* is cooled thanks to the hot MCU end.

Winter mode

Hot side of the MCU is connected to the cabin heat exchangers. *Power electronics* is cooled thanks to the cold MCU end.
Cabin temperature control system

The cabin temperature control is based on mean radiant temperature (MRT) measurement, to guarantee thermal comfort.

Strategy and operation thresholds are defined after the overall vehicle mathematical model.
ICE and SmarTOP integration

ICE system for driver and front area

SmarTOP system for rear area

Thermoelectric module

Hot air intake

Cold air outlet

Velocity Streamline 1

[Image showing the integration of ICE and SmarTOP systems in a vehicle for mobile air conditioning.]
Other Features

Weight of ICE system: +20 kg max (ref. standard electric heat pump)
Expected lifetime (in operation): 15,000 hours (approx. 300,000 km)
Noise level: ≤ standard system

Cost estimation (for 1000 pcs/year):

<table>
<thead>
<tr>
<th></th>
<th>Magnetocaloric</th>
<th>Vapor Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat pump unit</td>
<td>2.0 k€</td>
<td>1.5 to 2.5 k€ (*)</td>
</tr>
<tr>
<td>HVAC system</td>
<td>2.5 k€</td>
<td>3.0 k€</td>
</tr>
<tr>
<td>Electronics & Sensors</td>
<td>500 €</td>
<td>500 €</td>
</tr>
</tbody>
</table>

The ICE target cost have to be intended after having completed the industrial development, the initial production phase and a final system optimization.

(*) depending on size and component quality
THANK YOU!

Carloandrea Malvicino

Fuel Economy & Vehicle Systems Efficiency Program Manager

Centro Ricerche Fiat S.C.p.A.
Strada Torino, 50 - 10043 Orbassano (TO), Italia
Tel +39 011 9083260 Fax +39 011 9083898

e-mail: carloandrea.malvicino@crf.it