Heavy Duty Gas Engines integrated into Vehicles

Project status & results

EGVIA workshop
Brussels, 31 May 2017
The HDGAS project partners believe in LNG as a real alternative for medium & long distance transport - first as a complementary fuel and later as an adequate substitute for diesel.

This project has received funding from the European Union's Horizon 2020 Framework Programme for research, technological development and demonstration under grant agreement no 653391.

CONTACT DETAILS

Project Coordinator: AVL List GmbH
Theodor Sams
Theodor.Sams@avl.com
+43 316 787 1940

Project Manager: Uniresearch BV
Ms Kathrin Braun
K.Braun@uniresearch.com
+31 15 275 4000

www.hdgas.eu
Advanced LNG vehicle fuel system
Exhaust aftertreatment system and emission control

COMPONENT DEVELOPMENT

- Low pressure direct injection spark ignited engine with a highly efficient EGR system
- Low pressure port injected dual fuel engine
- High pressure gas direct injection diesel pilot ignitions gas engine

VEHICLE INTEGRATION

INDEPENDENT TESTING AND OVERALL ASSESSMENT

THE DEMONSTRATION VEHICLES WILL:
- Comply with the Euro VI emission regulations;
- Meet at minimum 10% CO₂ reduction compared to state of the art technology;
 - Show a range before fueling of at least 800 km on natural gas;
- Be competitive in terms of performance, engine life, cost of ownership, safety and comfort to 2013 best in class vehicles.

BACKGROUND

The European market for natural gas and dual fuel vehicles is modest in absolute vehicle numbers. However, major opportunity exists to expand the deployment of heavy duty natural gas (NGV) and dual fuel vehicles (DFV). A major advantage of natural gas as a heavy duty transportation fuel is its relatively low price compared to diesel fuel on an energy-equivalent basis.

The broader societal challenge is the development of advanced non-hybrid powertrain concepts for heavy duty vehicles (either dual-fuel or optimised for pure natural gas operation), complying with Euro VI emissions standards and meeting the CO₂ or greenhouse gas emissions targets currently under definition.

This will deliver significant air quality improvements, particularly in terms of particle numbers and NOₓ in real driving conditions, and will reduce the contribution of heavy duty vehicles to climate change.

OVERALL CONCEPT

The overall objective of HDGAS is to provide breakthroughs in LNG vehicle fuel systems, natural gas and dual fuel engine technologies as well as aftertreatment systems.

The developed components and technologies will be integrated into three demonstration vehicles that are representative for long haul heavy duty vehicles in the 40 ton range.

OBJECTIVES AND AIM

The overall objective of the HDGAS project is to develop, demonstrate and optimize advanced powertrain concepts for dual fuel and for pure natural gas operation engines, perform integration thereof into heavy duty vehicles and confirm achievement of Euro VI emissions standards, in-use compliance under real-world driving conditions and CO₂ or greenhouse gas targets currently under definition.
Main objectives

THE DEMONSTRATION VEHICLES WILL:

- Comply with the Euro VI emission regulations;
- Meet at minimum 10% CO₂ reduction compared to state of the art technology;
- Show a range before fueling of at least 800 km on natural gas;
- Be competitive in terms of performance, engine life, cost of ownership, safety and comfort to 2013 best in class vehicles.
Project structure

WP2 - Advanced LNG vehicle fuel system and standardization of fuelling process and interface

WP3 - Exhaust aftertreatment systems and emission control (including aspects)

WP4 - Low Pressure Positive Ignition Direct Injection Pure NG Engines and Vehicle Integration

WP5 - Low Pressure Dual Fuel Port Injected Engine Development and Vehicle Integration

WP6 - High Pressure Gas Injection Engine and Vehicle Integration

Integration into demonstrator vehicles and individual testing

Demo Vehicle with LP DI Spark Ignition Engine and New LNG Fuel feeding system

Demo Vehicle with LP Dual fuel Engine and New LNG Fuel feeding system

Demo Vehicle with HP GI Engine and New LNG Fuel feeding system

Proof >10% lower CO₂ equivalent emissions compared to best in class 2013 vehicles

WP7 - Independent testing and overall assessment

WP8 - Dissemination, communication and preparative exploitation activities
Project management and administration

ACHIEVEMENTS

- Internal communication and consortium management:
 - General assembly meetings with 9 months interval
 - Monthly executive board meetings
 - Web based workspace Project Place®

- Contractual, administrative and financial project management:
 - Overall project management and coordination with EU commission
 - Periodic discussion and reporting of technical progress
 - Establishment of a quality assurance and risk management process
LNG vehicle fuel systems and standardization

OBJECTIVES AT A GLANCE

• Development of LNG tank systems for different engine types:
 - Spark ignited
 - Dual fuel
 - Compression ignited

• Standardisation of fueling interface and process for LNG truck fueling

HIGHLIGHTS

★ Prototype tank systems have been developed and are under procurement

★ Draft standard for LNG refueling interface created at ISO

★ Prototype nozzles available
LNG vehicle fuel systems and standardization

ACHIEVEMENTS

- Tank system layout defined
- Prototype tank systems have been developed and are under procurement
- State-of-the-art thermodynamic simulation of the fueling and defueling process
- Draft standard for LNG refueling interface created at ISO
- First prototype fueling nozzles and receptacles have been manufactured
WP3

Exhaust after treatment systems and emission control

OBJECTIVES AT A GLANCE

• To develop and deliver aftertreatment systems for natural gas applications:
 – Stoichiometric
 – Dual fuel
 – Dedicated lean NG

• Ageing impact study on methane oxidation catalyst

• Calibration of systems to meet Euro VI emissions limits

HIGHLIGHTS

★ Fundamental studies on synthetic gas reactors performed for methane and NOx control
★ Aftertreatment systems specified and designed
★ Aftertreatment systems delivered to partners
★ Calibration of aftertreatment system under development
ACHIEVEMENTS

✓ Novel aftertreatment system developed for dedicated lean NG application which reduces the impact of ageing on the methane oxidation catalyst

✓ Dedicated SCR catalyst specified for lean NG application due to exhaust temperature window (higher exhaust temperatures than Diesel)

✓ Sulphur removal strategy developed to maintain efficiency of methane oxidation catalyst

✓ Fundamental studies developed understanding of sulphur poisoning on methane oxidation catalysts

✓ 4 scientific papers undergoing publication process

Fundamental studies investigating SCR catalysts for NG applications
Low pressure direct injection spark ignited engine

OBJECTIVES AT A GLANCE

• Development of two versions (stoichiometric and lean burn) of a new direct positive ignition NG engine capable of:
 – > 10% fuel efficiency
 – 10% reduced GHG emissions
 – 10% higher performance in comparison with current engines
 – Vehicle range > 800km

HIGHLIGHTS

★ Single cylinder testing finalized
★ Engine design completed
★ Multi cylinder prototype engines delivered to partners
Low pressure direct injection spark ignited engine

ACHIEVEMENTS

✓ 1D and CFD simulation of stoichiometric engine
✓ SCE testing of stoichiometric engine
✓ 1D and CFD simulation of lean burn engine
✓ Design of new components
✓ Procurement and construction of prototype engines
Low pressure port injected dual fuel engine

OBJECTIVES AT A GLANCE

- Development of a low pressure port injected dual fuel engine capable of:
 - 15% substitution increase compared to 2013 state of the art dual-fuel HD engines
 - 10% reduced GHG emissions compared to present diesel vehicle
 - Exhaust emissions meeting EU VI
 - Diesel-like performance and drivability
 - Vehicle range > 800km
 - Vehicle to operate in pure diesel mode

HIGHLIGHTS

- New closed-loop injection system developed and implemented
- Methane oxidation catalyst installed and calibrated
Low pressure port injected dual fuel engine

ACHIEVEMENTS

Engine:

✓ Investigations and simulations of gas flows, injection and combustion concluded

✓ New closed-loop injection system developed and implemented

✓ Prototype engine is running in dual fuel operation on the test bench

<table>
<thead>
<tr>
<th>WHTC test cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>GER [%]</td>
</tr>
<tr>
<td>65</td>
</tr>
</tbody>
</table>

Truck:

✓ Vehicle nearly ready for engine integration

MOC temperature over WHTC test cycle

Torque over WHTC test Cycle
High pressure gas direct injection engine

OBJECTIVES AT A GLANCE

- To develop and demonstrate a new Heavy Duty Methane Gas engine and vehicle, based on a High Pressure Direct Gas Injection (HPGI) with:
 - Exhaust emissions meeting EU VI
 - > 20% reduction of greenhouse gas emissions compared to present diesel engine
 - Same engine power, torque and drivability as diesel engine
 - > 90% substitution of diesel in real driving cycle
 - > 800 km driving range

HIGHLIGHTS

- Prototype injector developed and performance proven by tests
- Single- and multi-cylinder engines designed and procured
- Combustion system optimization by CFD
- Vehicle under development with:
 - device to mitigate all methane boil-off
 - low friction LNG pump and improved control
High pressure gas direct injection engine

ACHIEVEMENTS

✓ Summary of results from engine tests:
 – Fuel efficiency better than diesel
 – Soot emissions close to zero
 – Methane emissions engine-out meeting EU VI
 – > 90% substitution of diesel
Independent testing and overall assessment

OBJECTIVES AT A GLANCE

• Independent assessment of the achieved results compared to state of the art from 2013:
 – GHG and CO2
 – Driving range
 – Emission compliance on test bed and on road

• Cost assessment

HIGHLIGHTS

★ Testing procedures defined
★ Baseline testing performed
★ First target testing planned in June 2017 (engine)
Independent testing and overall assessment

ACHIEVEMENTS

✓ Testing procedures and necessary documentation defined for

1) Emission compliance:
 – Test method (test bed and on road)
 – Test cycles
 – Fuel
 – Emission components

2) Target fulfillment:
 – GHG / CO2
 – Driving range
 – Performance
WP8

Dissemination, communication and preparative exploitation activities

ACHIEVEMENTS

✓ Elaboration of a dissemination plan

✓ Participation at international conferences and workshops

✓ Creation and publication of:
 - project website
 - regular newsletters
 - flyer

✓ Elaboration of an exploitation plan
WP8

Dissemination, communication and preparative exploitation activities

- Publication of **results**
 - ✓ under ‘latest news’ &
 - ✓ in newsletter
- Publishable summaries
 - ✓ under ‘results’
 - ✓ regular updates

HDGAS latest news

- **Design of an advanced spark-ignition engine for LNG operation**
 - Natural Gas (NG) has been considered a viable alternative to diesel fuel in HD applications for the past twenty years. Its advantages are mainly related to lower emission levels of... Read more

- **HDGAS’s first publication regarding Lean Burn Natural Aftertreatment Systems**
 - The Horizon 2020 EU funded HDGAS project, which focuses on advancing Natural Gas technology for HD applications, has published its first document regarding lean burn aftertreatment systems for natural gas... Read more

- **NGVA Europe LNG Connector Workshop**
 - One of the aims of HDGAS is the definition of a new design for a LNG refueling connector consisting of a fueling nozzle and a fueling receptacle. In respect to... Read more
Results

On this page the public available documents from the project can be downloaded.

Public reports

- HDGAS-D2 1-System Layout Of LNG Tank System-Daimler-Public Summary (397.4 KB)
- HDGAS-D3 1-Output From Catalyst Model-UEF-Public Summary (392.1 KB)
- HDGAS-D3 2-Catalyst Specs-DINEX-Public Summary (366.5 KB)
- HDGAS-D4 2-CFD Simulations-RICARDO-Public Summary (345.6 KB)
- HDGAS-D4 3-New Engine Components’ Design-FPT-Public Summary (347.4 KB)
- HDGAS-D4 4-Prototype Of New FPT Cursor 13 Pure NG LPDI Engine-FPT-Public Summary (338.2 KB)
- HDGAS-D5 1-Baseline Engine Performance-Idiada-Public Summary (350.5 KB)
- HDGAS-D5 2-Dual Fuel Performance Evaluation-Idiada-Public Summary (353.1 KB)
- HDGAS-D8 3-MPI Low Pressure Dual-fuel Functional Operation-IDIADA-Public Summary (353.4 KB)
- HDGAS-D8 1-Prototype Injectors For SCE And ECU-Bosch-Public Summary (499.8 KB)
- HDGAS-D8 1-Project Website Public And Partner Restricted Part-UNR-Final (1.3 MB)
- HDGAS-D8 2-FiHyR-UNR (1.3 MB)
- HDGAS-D8 3-Dissemination Plan-initial-UNR (595.3 KB)
- HDGAS-D8 4-Exploitation Plan-UNR-2016 (690.7 KB)
Outlook and risk mitigation

WP2: Advanced LNG vehicle fuel system
- Low pressure direct injection spark ignited EGR engine
- Low pressure port injected dual fuel engine
- High pressure gas direct injection diesel pilot ignition engine

WP3: Engine aftertreatment system
- Methane conversion efficiency and catalyst ageing are being considered as main challenge. New catalyst compositions will make a major contribution being emission compliant without major fuel efficiency penalties by applying targeted thermal management.

WP4: The stoichiometric SI engine is considered as straightforward technology with no concerns in terms of emission compliance. With several new technologies being implemented, major steps reducing fuel consumption will be realized. The goal of reaching 10% reduction still remains challenging. The lean burn version should easily reach the targets connected to improved efficiency while compliance with emission level of methane is the main challenge.

WP5: Dual fuel engines offer great flexibility to its operators while the LNG network still needs improvements in terms of coverage. Reaching the 10% of CO2 reduction has been achieved already. Being emission compliant in all conditions still remains as the main challenge.

WP6: HPGI offers high CO2 reduction potential (>20%) as well as no major concerns in terms of emission compliance. System complexity and cost are areas to be in focus.
END
of
PRESENTATION

www.hdgas.eu